The Adjacency Matroid of a Graph
نویسندگان
چکیده
منابع مشابه
The Adjacency Matroid of a Graph
If G is a looped graph, then its adjacency matrix represents a binary matroid MA(G) on V (G). MA(G) may be obtained from the delta-matroid represented by the adjacency matrix of G, but MA(G) is less sensitive to the structure of G. Jaeger proved that every binary matroid is MA(G) for some G [Ann. Discrete Math. 17 (1983), 371-376]. The relationship between the matroidal structure of MA(G) and t...
متن کاملAdjacency metric dimension of the 2-absorbing ideals graph
Let Γ=(V,E) be a graph and W_(a)={w_1,…,w_k } be a subset of the vertices of Γ and v be a vertex of it. The k-vector r_2 (v∣ W_a)=(a_Γ (v,w_1),… ,a_Γ (v,w_k)) is the adjacency representation of v with respect to W in which a_Γ (v,w_i )=min{2,d_Γ (v,w_i )} and d_Γ (v,w_i ) is the distance between v and w_i in Γ. W_a is called as an adjacency resolving set for Γ if distinct vertices of ...
متن کاملThe homology of the cycle matroid of a coned graph
The cone Ĝ of a finite graph G is obtained by adding a new vertex p, called the cone point, and joining each vertex of G to p by a simple edge. We show that the rank of the reduced homology of the independent set complex of the cycle matroid of Ĝ is the cardinality of the set of the edge-rooted forests in the base graph G. We also show that there is a basis for this homology group such that the...
متن کاملThe Adjacency Matrix and Graph Coloring
These notes are not necessarily an accurate representation of what happened in class. The notes written before class say what I think I should say. I sometimes edit the notes after class to make them way what I wish I had said. There may be small mistakes, so I recommend that you check any mathematically precise statement before using it in your own work. These notes were last revised on Septem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Electronic Journal of Combinatorics
سال: 2013
ISSN: 1077-8926
DOI: 10.37236/2911